Ion-exchange polymer nanofibers for enhanced osteogenic differentiation of stem cells and ectopic bone formation.

نویسندگان

  • Iman Shabani
  • Vahid Haddadi-Asl
  • Masoud Soleimani
  • Ehsan Seyedjafari
  • Seyed Mahmoud Hashemi
چکیده

Nanofibrous scaffolds with specific modifications have shown promising potential for bone tissue engineering applications. In the present study, poly(ether sulfone) (PES) and sulfonated PES (SPES) nanofibers were fabricated via electrospinning. Calcium ions were then incorporated in SPES by immersion in a Ca(OH)2 solution. The calcium-ion-exchanged SPES (Ca-SPES), PES, and SPES nanofibers were characterized and then evaluated for their osteogenic capacity: both in vitro using stem cell culture and in vivo after subcutaneous implantation in mice. After 7 days of immersion in simulated body fluid, the formation of an apatite layer was only observed on Ca-SPES nanofibers. According to the MTT results, an increasing stem cell population was detected on all scaffolds during the period of study. Using real-time reverse transcriptase-polymerase chain reaction, alkaline phosphatase activity, and calcium content assays, it was demonstrated that the osteogenic differentiation of stem cells was higher on Ca-SPES scaffolds in comparison with PES and SPES nanofibers. Interestingly, Ca-SPES scaffolds were shown to induce ectopic bone formation after 12 weeks of subcutaneous implantation in mice. This was confirmed by mineralization and the production of collagen fibers using van Kossa and Masson's trichrome staining, respectively. Taken together, it was demonstrated that the incorporation of calcium ions into the ion-exchange nanofibrous scaffolds not only gives them the ability to enhance osteogenic differentiation of stem cells in vitro but also to induce ectopic bone formation in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...

متن کامل

The effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells

Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...

متن کامل

Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...

متن کامل

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2014